

Efficient Multicast for Grid Environment Using
Robber and Bit Torrent Protocol

V.Matheswaran1, S.Usha 2

1MCA Department, Gnanamani College of Technology,Tamilnadu,India
2CSE Department,AnnaUniversity of Technology,Tiruchirappalli(Panruti Campus),Tamilnadu,India

Abstract- Grid computing can be characterized as distributed
infrastructure that is a collection of computing resources within or
across locations that are aggregated to act as a unified processing
resource. In some of the anticipated future Grid applications, the
same data will be transmitted to multiple sites. It is widely accepted
that this can be, in theory, best achieved using reliable multicast
protocols. In this paper we present Robber, a collective, receiver-
initiated, high-throughput multicast approach inspired by the
BitTorrent protocol. Unlike BitTorrent, Robber is specifically
designed to maximize the throughput between multiple cluster
computers. Nodes in the same cluster work together as a collective
that tries to steal data from peer clusters. Instead of using
potentially outdated monitoring data, Robber automatically adapts
to the currently achievable bandwidth ratios. Within a collective,
nodes automatically tune the amount of data they steal remotely to
their relative performance. Our experimental evaluation compares
Robber to BitTorrent, to Balanced Multicasting, and to its
predecessor MOB. Balanced Multicasting optimizes multicast trees
based on external monitoring data, while MOB uses collective,
receiver-initiated multicast with static load balancing. Our
experimental evaluation shows that our approach outperforms
existing multicast strategies by large margins.

Keywords: High-throughput multicast, Load-balancing, Cluster
computing, application layer multicast; grid computing; overlay
networks.

1. INTRODUCTION
A grid consists of multiple sites, ranging from single
machines to large clusters, located around the world.
Contrary to more traditional computing environments like
clusters or super computers, the network characteristics
between Grid sites are very heterogeneous. Therefore,
communication libraries need to take this heterogeneity into
account to maintain efficiency in a world-wide environment.
A typical communication pattern is the transfer of a
substantial amount of data from one site to multiple others,
also known as multicast. The completion time of large data
transfers depend primarily on the bandwidth of the
interconnection network.[1]. Multicasting is usually
implemented by arranging the nodes in a certain spanning
tree over which the data are sent. This method can be very
inefficient in a grid environment, where the differences in
bandwidth between sites should be taken into account to
achieve high throughput.
Using reliable multicast protocols in Grid computing is still
an open issue and a lot of researches have been made in
recent years [2]. Most of these have aimed at easily porting
existing Grid applications to multi-destination environments
by enriching TCP with multicast capabilities (protocol level)
[11]. However, it is worth noting that typically Grid

middleware platforms exhibit their own programming
interfaces that hide low-level communication APIs, such as
sockets. Therefore, TCP extension is useful when an existing
application that directly uses TCP has to be modified in order
to deliver data to multiple receivers. Another approach could
be based on application-aware components, called Active
Routers [24], disseminated in specific points of the Grid
infrastructure, which are able to handle application-dependent
services on incoming data packets (infrastructure level), for
example to improve the performances of a multicast
communication. This approach has some disadvantage of
requiring the deployment of specific routers, with ad-hoc
execution environments, that limits its application and
widespread in the implementation of real Grid systems.
To tackle the above issues, we think that group
communication mechanisms can be adopted to easily write
applications according to the hierarchical master-slave model.
As a consequence, providing a middleware for Grid
computing with an effective and efficient implementation of
the group abstraction could simplify software development
and reduce the communication overhead both in small scale
and in large scale networks. In this paper we have presented
Robber a receiver initiated multicast approach that combines
collective data stealing with load balancing. In Robber, the
amount of data a node steals remotely is treated as “work”.
Initially, the work is divided equally among all nodes in a
collective and its steal from local peers. In this way fast nodes
will steal more data from slower nodes. However, the
problems and solutions proposed can be easily applied to
other Grid platforms.

2. MATERIALS &METHODS
In a multicast operation, the root node is transmitting data to
all other nodes of a given group, like the processes of an
application. This is comparable to MPI’s broadcast operation.
For optimizing multicast, we are minimizing the overall
completion time, from the moment the root node starts
transmitting until the last receiver has got all data. As we are
interested in multicasting large data sets, we optimize for
high throughput. Thus report our results as achieved
throughput (in MB/s). Before presenting our proposed work,
Robber algorithm, we first discuss more traditional
approaches to multicasting in grids and Internet-based
environments. In this section, we also summarize our
previous approaches Balanced Multicasting and MOB, as
well as some other receiver-initiated multicast approaches,
and discuss their performance limitations. We complete our

V.Matheswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4294 - 4301

4294

discussion with some background on random stealing, which
is used in our Robber algorithm.
2.1 Overlay Multicasting
Multicasting over the Internet started with the development of
IP multicast, which uses specialized routers to forward
packets. Since IP multicast was never widely deployed,
overlay multicasting became popular, in which only the end
hosts play an active role. Several centralized or distributed
algorithms have been proposed to find a single overlay
multicast tree with maximum throughput [13], [14]. Splitting
the data over multiple trees can increase the throughput even
further. A related topic is the overlay multicast of media
streams, in which it is possible for hosts to only receive part
of the data (which results in, for instance, lower video
quality). In [14], [15], a single multicast tree is used for this
purpose. Split Stream [16] uses multiple trees to do distribute
streaming media in a P2P context. Depending on the
bandwidth each host is willing to donate, the hosts receive a
certain amount of the total data stream. The maximum
throughput is thus limited to the bandwidth the stream
requires. In contrast, our multicast approaches try to use the
maximum amount of bandwidth the hosts and networks can
deliver.
2.2 Network Performance Modeling
Throughout this work, we assume networks as sketched in
Fig. 2.2. Nodes are distributed among clusters. Within each
cluster, nodes are connected via some local interconnect.
Towards the WAN, each node has a network interface that is
connected to a shared access link. All access links end at a
gateway router (typically to the Internet). Within the WAN,
we assume full connectivity among all clusters. For
optimizing multicast operations, we need to efficiently use
the available network bandwidth where we distinguish, as
outlined in [6]. Bandwidth Capacity is the maximum amount
of data per time unit that a hop or path can carry. Achievable
Bandwidth is the maximum amount that a hop or path can
provide to an application, given the current utilization, the
protocol and operating system used, and the end-host
performance. We are interested in maximizing the achievable
bandwidth of all data streams used for a multicast operation.

Fig. 1: Network model including clusters

In multicasting, sharing effects can be observed whenever
single host is sending to and/or receiving from multiple other
hosts. Here, the bandwidth capacity of the local network can
become a bottleneck. This local capacity can be limited either
by the network interface (e.g., a Fast Ethernet card, connected
to a gigabit network), or by the access link to the Internet that
is shared by all machines of a site. In this Section we refer to
this setting as a local bottleneck environment, dominated by
local bandwidth capacity. The opposite situation, where the
bottleneck bandwidth is dominated by the achievable
bandwidth across the wide-area network, we will call a global
bottleneck environment.
In order to optimize multicast operations based on the given
network characteristics, one has to rely on external network
monitoring systems like the Network Weather Service [17],
REMOS [18], or Delphoi [19]. Using such tools, however,
has its own issues. First of all, the monitoring tools have to be
deployed between all clusters in question. Frequently, this is
an administrative issue. Second, network bandwidth is
measured using active probes (sending measurement traffic)
which can take significant amounts of time and scales only
poorly to large environments as, for N clusters, O(N2)
network paths need to be measured. Consequently,
measurements are run in frequencies that are too low to
properly follow dynamic bandwidth fluctuations. Finally,
network monitoring tools measure the properties of the
network paths themselves rather than the properties that are
relevant to the applications, namely achievable bandwidth.
Translating monitoring data to application-level terms is a
hard problem [19].
2.3 Optimizing Sender-initiated Multicast
Optimization of multicast communication has been studied
extensively within the context of message passing systems
and their collective operations. The most basic approach to
multicasting is to ignore network information altogether and
send directly from the root host to all others. MagPIe [5] used
this approach by splitting a multicast in two layers: one
within a cluster, and one flat tree between clusters. Such a flat
tree multicast puts a high load on the outgoing local capacity
of the root node, which often becomes the overall bandwidth
bottleneck. As an improvement, we can let certain hosts
forward received data to other hosts. This allows to arrange
all hosts in a directed spanning tree over which the data are
sent. MPICH-G2 [20] followed this idea by building a multi-
layer multicast to distinguish wide-area, LAN and local
communication.
As a further improvement for large data sets, the data should
be split to small messages that are forwarded by the
intermediate hosts as soon as they are received to create a
high-throughput pipeline from the root to each leaf in the tree
[21]. The problem with this approach is to find the optimal
spanning tree. If the bandwidth between all hosts is
homogeneous, we can use a fixed tree shape like a chain or
binomial tree, which is often used within clusters [22]. As a
first optimization for heterogeneous networks, we can take
the achievable bandwidth between all hosts into account. The
throughput of a multicast tree is then determined by its link

V.Matheswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4294 - 4301

4295

with the least achievable bandwidth. Maximizing this
bottleneck bandwidth can be done with a variant of Prim’s
algorithm, which yields the maximum bottleneck tree [13].
However, this maximum bottleneck tree is not necessarily
optimal because each host also has a certain local capacity. A
forwarding host should send data to all its n children at a rate
at least equal to the overall multicast throughput t. If its
outgoing local capacity is less than n · t, it cannot fulfill this
condition and the actual multicast throughput will be less
than expected. Unfortunately, taking this into account
generates an NPhardproblem.
The problem of maximizing the throughput of a set of overlay
multicast trees has also been explored theoretically. Finding
the optimal solution can be expressed as a linear
programming problem, but the number of constraints grows
exponentially with the number of hosts. In theory, this can be
reduced to a square number of constraints, but in practice
finding the exact solution can be slow and expensive [23].
Any solution thus will have to rely on heuristics to be
applicable in real time. The multiple tree approach in [3] uses
linear programming to determine the maximum multicast
throughput given the bandwidth of links between hosts, but
requires a very complicated algorithm to derive the set of
multicast trees that would achieve that throughput. Therefore,
the linear programming solution is only used to optimize the
throughput of a single multicast tree. The Fast Parallel File
Replication (FPFR) tool [4] is implementing multiple
concurrently used multicast trees. FPFR repeatedly uses
depth-first search to find a trees panning all hosts. For each
tree, its bottleneck bandwidth is “reserved” on all links used
in the tree. Links with no bandwidth left can no longer be
used for new trees. This search for trees continues until no
more trees spanning all hosts can be found. The file is then
multicast in fixed-size chunks using all trees found. FPFR
does not take the local bandwidth capacity of hosts into
account, leading to over subscription of links, forming
capacity bottlenecks. In consequence, depending on local
capacities, FPFR may perform much worse than expected.
2.4 Balanced Multicasting
In previous work [7], we have presented Balanced
Multicasting, improving over FPFR by also taking bandwidth
capacity into account. An example is shown in Fig-2(a),
consisting of three hosts, each connected to the network by
their access line. Routers connect access lines with the WAN.
Access lines are annotated with their local capacity, e.g. the
capacity of the LAN. Wide-area connections are annotated
with their achievable bandwidth. For simplicity of the
example, we assume all connections to be symmetrical in
both directions. (The actual units for bandwidth are not
relevant here.)
In this example, Balanced Multicasting creates the three
multicast trees shown in Fig. 2(b), with a total achievable
bandwidth of 9. Together, these trees maximize the multicast
throughput while not oversubscribing individual link
capacities. Please note that the individual trees may have
different bandwidth, in the example 4, 1, and 4. These

different data rates are enforced by traffic shaping at the
sender side.

(a) Network example: x sends data to y and z

(b) Balanced multicast trees

Fig. 2: Example of Balanced Multicasting

This process of balancing the bandwidth shares gave the
name to the approach. If the sender would not balance the
shares of the three trees, then the middle tree (using the LAN
at x twice) would consume bandwidth that was intended for
the other trees, resulting in a total bandwidth of 3 × 10/4 =
7.5, instead of the anticipated 9. This example shows
balanced multicast trees as they are computed by our
algorithm published in [7]. Finding the optimal set of
balanced multicast trees is an NP-hard problem. For this
reason, our implementation is using heuristics to find
solutions which we have shown in [7] to be close to the
optimum.
 When evaluating Robber, we compare to Balanced
Multicasting as a (close-to) optimal solution that can be
found with complete network performance information.
Balanced Multicasting, however, like all other spanning tree
based multicasting strategies, is computing its optimized
spanning trees based on the monitoring data available at the
time when the multicast is started. Later changes in the
network will not be taken into account.
2.5 Receiver-initiated Multicast
As explained so far, deriving optimized multicast trees is a
hard problem. Especially in the case of dynamically changing
network performance, carefully computed multicast trees can
easily become inefficient. Therefore, several alternatives have
been developed based on receiver-initiated communication,
in which nodes explicitly request data from each other instead
of forwarding it over trees. Bullet [24] takes a hybrid
approach to high-throughput multicasting. A Bullet network

V.Matheswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4294 - 4301

4296

consists of a tree combined with a mesh overlay. The data is
divided in blocks that are further divided in packets. Nodes
send a disjoint subset of packets to their children in the tree,
and request the remaining pieces from a set of disjoint peers
in the system. The selection of those peers is based on
random, orthogonal subsets of nodes distributed periodically
by the RanSub algorithm. Bullet’s additional mesh
distribution layer yields significantly better throughput than
traditional tree structures. Bit Torrent [8] is a peer-to-peer
application, designed to distribute large files efficiently. The
data is logically split in P equally-sized pieces, usually a few
hundred kilobytes each. Nodes create an overlay mesh by
connecting to a few peer nodes chosen at random, and tell
each other which pieces they already possess. From then on,
nodes constantly inform each other which new pieces they
received. Nodes explicitly request pieces from their peers,
which are randomly chosen from the reported ones. Each
node always has R outstanding requests (we use R = 5) to get
the ’pipelining’ effect described in [8]. Which peers are
allowed to request pieces is decided by the so-called choking
algorithm. A node ’unchokes’ only N peers at the same time
(we use N = 5), thereby allowing them to download pieces.
The decision to choke or unchoke peers is made every 10
seconds, and is based on the observed download rate. This
results in an incentive to upload pieces, since uploading gives
a higher chance of being allowed to download.
Chainsaw [9] uses a simplified version of the Bit Torrent
protocol, applied to live streaming of data. Nodes have a
sliding window of interest, which they advertise to their
neighbors. Packets that could not be found in time ’fall off’
the trailing edge of the window, and are considered lost.
2.6 Clustering Nodes
Other work has already recognized that grouping receiver-
initiated multicast nodes to clusters can increase the overall
throughput. Biased neighbor selection [25] proposes to group
BitTorrent nodes by ISP (Internet Service Provider), which
reduces the amount of costly traffic between ISPs. Robber is
doing a similar grouping by cluster, but also adds teamwork
among the nodes of a cluster to further improve multicast
performance. In uncooperative peer-to-peer environments,
this improvement would not be possible.
Another approach is followed by Tribler [26], a
BitTorrentclient that groups users in social clusters of friends.
The amount of trust between nodes is increased using
existing relations between people. Users can tag each other as
a friend, indicating they are willing to donate upload
bandwidth to each other by searching each other’s pieces.
Robber is essentially an automation of this technique applied
to grid clusters, with all nodes in the same cluster being
friends. However, the coordination of teamwork in Robber is
much more efficient. Robber’s predecessor MOB [10] is
based on the Bit-Torrent protocol. Nodes in the same cluster
are grouped to ’mobs’. Each node in a mob steals an equal
part of all data from peers in remote clusters, and distributes
the stolen pieces locally. This way, each piece is transferred
to each cluster only once, which greatly reduces the amount
of wide-area traffic compared to BitTorrent. The incoming

data is also automatically spread overall nodes in a mob,
which works very well when the NICs of the nodes are the
overall bandwidth bottleneck instead of the wide-area links.
Although MOB achieves good throughput with a small
amount of homogeneous clusters, its static load balancing
approach fails in larger or more heterogeneous grid
environments.
The amount of WAN traffic between clusters of Bit-Torrent
nodes can also be decreased using network coding [23].
Nodes then exchange linear combinations of pieces, which
increases the probability that a peer in the same cluster has
data of interest. However, the complexity and computational
overhead of network coding have limited its practical use.
The work division in MOB and Robber is much more
lightweight and also minimizes the WAN traffic between
clusters.
2.7 Random Work Stealing
Random work stealing is a well known load balancing
technique used in various distributed computing systems. It
can be applied when multiple nodes are solving a
computational problem by dividing it into a number of
smaller problems. All problems assigned to a node are called
its work. Each node starts solving all problems assigned to it.
When a node becomes idle, it will attempt to steal some work
from a randomly selected peer, repeating steal attempts until
it succeeds. This way, faster nodes will eventually process
more work than slower nodes. Robber uses this technique to
dynamically spread the bandwidth demand of a multicast
operation over nodes in the same cluster.

3. PROPOSED WORK
More recently, receiver-initiated multicast has become
popular in peer-to-peer networking. Here, the application
nodes are arranged in a random mesh, and explicitly request
data from their neighbors. Nodes update each other about
which parts of the data they possess, and randomly exchange
parts with each other. This way, nodes dynamically route the
data over the mesh. The request-reply interaction between
nodes automatically adapts the effective throughput to the
available bandwidth, which handles heterogeneous and
fluctuating WAN bandwidth very well.
Most current receiver-initiated multicast approaches are
designed for peer-to-peer systems of individual and
uncooperative nodes. In contrast, we apply this approach to
grid environments, consisting of multiple clusters of
cooperative application nodes.
In such systems, the set of nodes used by a grid application
remains constant during a single run, i.e., there is no churn.
Any data loss will only affect the achievable bandwidth,
which, in turn, is handled by our multicast algorithms.
 This paper presents Robber, a successor to MOB that adds
dynamic load balancing within a collective. Instead of using a
static division of work (the data to request remotely), nodes
that have become idle steal work from other nodes in the
same collective. As a consequence, each node automatically
performs an amount of work proportional to its relative speed
in a collective.

V.Matheswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4294 - 4301

4297

This avoids waiting for slow nodes to complete their share of
work, greatly enhancing the overall throughput. In large grid
environments and with heterogeneous clusters, Robber
automatically adjusts the workload of nodes in each cluster to
their relative performance, resulting in much better
throughput.
To reduce the work load for the users secure data
transmission from the server using WLA.
In this section we present Robber, a multicast algorithm
based on collective data stealing. Robber distributes data over
a random mesh by letting nodes ’steal’ pieces from other
nodes. In addition, nodes in the same cluster team up in
collectives that together try to steal pieces from nodes in
other clusters as efficiently as possible. The total set of pieces
a collective C has to steal from nodes in other clusters is
called its work(C). Initially, each node n  C is assigned an
equal share of work, denoted as work (n). Each stolen piece is
exchanged locally between members of a collective, such
that, at the end, all nodes will have received all data. When a
node has no more work left, it attempts to steal work from a
randomly selected local peer. This way, faster nodes
download more pieces to a cluster than slower nodes, which
prevents the latter from becoming the overall bandwidth
bottleneck.
Fig-3 illustrates the peer selection process. With equally-
sized clusters, potential global peers have same collective
rank. With different-sized clusters, potential global peers are
selected uniformly at random from an equal share of all
nodes. This strategy ensures that the connections between
nodes in different clusters are well spread out over all clusters
and their nodes.

Fig. 3: Examples of peer selection between two clusters of

the same size (A and B) and different sizes (A and C).
Potential global peers are connected by an arrow.

After all connections are set up, data can be transferred. The
data is logically split into P equally sized pieces, numbered
0 to P − 1. At the start of a multicast operation, each node n
provides a set of the indices of the pieces it already possesses,
denoted as possession(n). In a regular multicast operation, on
eroot node possesses everything and the other nodes nothing.
Other variations are also possible, like multiroot multicast
(where multiple nodes have all data) or striping (where each
node in a collective has a part ofall data). As long as there is
at least one ’root collective’ in which all nodes together
possess all pieces, all nodeswill receive all data. The set of
piece indices denoting the pieces a Robber node n wants to
steal from a peer p is called its desire(n, p). From local peers,
a node desires all pieces it does not have. From global peers,

a node n only desires the pieces that are part of its work(n).
When a node has received all P pieces, it joins a final
synchronization phase. Here, each node keeps serving
requests from its peers until this is no longer necessary, so
every node is able to finish. A node starts the synchronization
phase by sending a ’done’ message to all its peers. Whenever
it receives such a message from a peer, it remembers the peer
is done. When a node and its peer are both done, they send a
final ’stop’ message to each other. This ’stop’ message s the
last message sent to a peer in a single multicast operation.
When a node receives a ’stop’ message from a peer, it stops
listening to it. A node finished a multicast operation once it
stopped listening to all its peers. Nodes communicate with
their peers using a variant of the BitTorrent protocol [8] using
only bitfield, have, request and piece messages for stealing
data. We add desire, steal, work and found-work messages for
stealing work. Table 1 summarizes the format of each
message.

TABLE 1: Format of messages used by Robber

4. RESULTS & DISCUSSION

In Grid environment, this method can be efficient as
bandwidth between sites can not vary among network paths.
The completion time of large data transfer depends primarily
on the bandwidth across network. Fig- 4 shows a high-level
view of the software layers in our implementation, and
Robber’s implementation in more detail. We have
implemented Robber, as well as BitTorrent, MOB, and
Balanced Multicasting (BM) on top of Ibis, our Java-based
Grid programming environment. We used the Smart Sockets
library to emulate different clusters inside a single cluster by
providing configurable custom routing of data, which we
used to evaluate our algorithms. Ibis provides all nodes with
the names and ranks of all other nodes and the names of their
clusters, which is all the input data Robber and MOB need.
Balanced Multicasting also needs network monitoring data
information. we use the input for the emulation itself as
monitoring data.

Fig.-4: Software layers and details of Robber’s

implementation

Message(s) Format
steal, found-work, done, stop opcode (byte)

have, request
opcode (byte), piece index
(integer)

bitfield, desire, work
opcode (byte), piece indices (list
of booleans)

piece opcode (byte), data (list of bytes)

V.Matheswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4294 - 4301

4298

Each of the four multicast methods is encapsulated in a
Multicast Channel object. Fig- 4 shows the implementation of
the Robber Multicast Channel object. All connections to
peers are created in the constructor. Each connection is
abstracted in a Robber Connection object. The underlying
Robber Communicator object sends and receives protocol
messages using Ibis’ send port and receive port primitives.
All received messages are processed in asynchronous up calls
provided by Ibis, and translated to individual callback
functions in the Robber Connection object on top. Outgoing
data is put into a queue and sent in a separate thread per
connection to avoid deadlocks.
Data can be multicast by invoking the same method on a
Robber Multicast Channel object on each node, which returns
when all data has been received. Received data can only be
altered after calling Robber Multicast Channel. flush(), which
waits until all peers have received all data too.
We emulated the various WAN scenarios in all test cases
within one cluster of the Distributed ASCI Supercomputer 3
(DAS-3) [12]. Each node in the DAS-3 is equipped with two
2.4GHz AMD Opterons and a 10Gbit Myrinet network card
for fast local communication. Using emulation enabled us to
precisely control the environment and subject each multicast
method to exactly the same network conditions without any
interfering background traffic. This ensured a fair comparison
and reproducible results. The emulation only concerns the
network performance. All application nodes run the real
application code (Ibis and one of the four multicast protocols
on top).

Fig-5: Emulation setup with four clusters. The hub nodes A,

B,C, and D route data between clusters and apply traffic
control.

We have evaluated Robber by comparing its performance to
that of BitTorrent, MOB, and Balanced Multicasting in four
test cases. The first two test cases consist of several ’global
bottleneck’ scenarios of various dynamics and size. The
second two test cases are examples of ’local bottleneck’
scenarios, and show that Robber achieves the same optimized
throughput between clusters as Balanced Multicasting,
without needing any external monitoring data. Finally, we
have analyzed the communication overhead and
computational overhead of Robber and MOB. Fig-5 shows
the setup of four emulated clusters, as used in the first test
case.

The other test cases use an identical setup, except for the
amount of clusters. Nodes in the same emulated cluster
communicate directly, but traffic between nodes in different
emulated clusters is routed via two special ’hub’ nodes using
Smart Sockets. Besides routing inter-cluster traffic, the hubs
also emulate the wide-area bandwidth and delay between
clusters using the Linux Traffic Control (LTC) kernel module
to slow down outgoing Myrinet traffic.
Bandwidth is emulated using HTB qdiscs , while one-way
delay is emulated using Netem qdiscs. The qdiscs use a
default maximum queue length of 1000 packets. The hubs
apply simple end-to-end flow control to slow down a source
node in case of ’congestion’. All qdiscs together mulate
incoming and outgoing capacity of nodes and clusters, and
delay and bandwidth between clusters.
The first two test cases evaluate the performance of
BitTorrent, MOB, Robber and Balanced Multicasting in
various ’global bottleneck’ environments. In the first test
case, we compare the performance of all multicast methods
under fluctuating wide-area bandwidth. The second test case
demonstrates the emergence of slow nodes in larger
environments, and shows the benefit of Robber’s load
balancing strategy.
Test Case 1: Dynamic Wide-area Bandwidth The first test
case consists of five WAN scenarios with different dynamics:
1) fast links: the WAN bandwidth on all links is stable and

set.
2) slow links: like scenario 1, but with the bandwidth of links

A ↔ D and B ↔ C set to 0.8 MB/s.
3) fast → slow: like scenario 1 for 30 seconds, then like

scenario 2, emulating a drop in throughput on two WAN
links.

4) slow → fast: like scenario 2 for 30 seconds, then like
scenario 1, emulating an increase in throughput on two
WAN links

5) mayhem: like scenario 1, but every 5 seconds all links
randomly change their bandwidth between10% and
100% of their nominal values, emulating heavy
background traffic. The random generator is always
initialized with the same seed to ensure that this scenario
uses identical fluctuations every time.

In all five scenarios, the one-way delay of the wide area links
is set to 10 ms. We emulate four clusters of16 nodes each.
One root node in cluster A sends 600 MB to all other nodes,
using four different multicast methods (BitTorrent, MOB,
Robber, and Balanced Multicasting)in the five scenarios
described above. In each scenario, Balanced Multicasting
uses the exact initial emulated bandwidth values as input for
its algorithm. We also compute the theoretical maximum
throughput in each scenario by converting all 16 possible
multicast trees between the four clusters to a linear program.
For the maximum throughput in the dynamic scenarios, we
assume that the theoretical algorithm can adapt instantly to
the optimal strategy in each new situation.

V.Matheswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4294 - 4301

4299

Fig. 6: Multicast throughput between four clusters of 16

nodes each. The root node sends 600MB to all others using
four different methods.

Fig.6 shows for each scenario the throughput of each
multicast method, calculated as 600 MB divided by the time
passed between the moment the root started the multicast and
the moment the last node received all data. Table-1 shows
these throughput values as a percentage of the theoretical
maximum throughput in each WAN scenario. It can be seen
that BitTorrent always performs worst, which is caused by
the overhead it creates by sending duplicate WAN messages.
The difference between MOB and Robber shows the small
overhead of Robber’s extra load-balancing communication
(which is not really needed in this case, since all nodes in
each cluster are equally fast). Robber and MOB perform
similar to Balanced Multicasting in the static scenarios, and
outperform it in all three dynamic ones. In the first dynamic
scenario ’fast → slow’, Balanced Multicasting over uses the
links that became slow and does not adapt, for which it is
heavily penalized.
In contrast, Robber and MOB adapt and use the other WAN
links to distribute the data, resulting in much higher
throughput. In the second dynamic scenario ’slow→fast’,
Balanced Multicasting does not use the extra achievable band
width that became available on two WAN links due to its
sender-side traffic shaping. It therefore achieves the same
throughput as in the ’slow links’ scenario, whereas Robber
and MOB greedily use the extra bandwidth that became
available. In the last dynamic scenario ’mayhem’, the average
throughput of all links is 55% of that in the ’fast links’
scenario. Balanced Multicasting actually achieves 30% of its
throughput in the ’fast links’ scenario, since it continuously
uses the same WAN links and the throughput of the
bottleneck link in each of its multicast trees determines its
overall throughput.

TABLE 2: Percentage of the theoretical maximum
throughput each multicast method achieves in the five WAN

scenarios
Links BitTorrent MOB Robber BM

Fast links 13% 92% 91% 93%

Slow Links 13% 92% 91% 93%

Fast-> Slow 8% 78% 85% 19%

Slow->Fast 18% 98% 95% 57%

Mayhem 14% 92% 90% 55%

5. CONCLUSION
In this paper we have presented Robber a receiver initiated
multicast approach that combines collective data stealing
with load balancing. In Robber, the amount of data a node
steals remotely is treated as “work”. Initially, the work is
divided equally among all nodes in a collective and its steal
from local peers. In this way fast nodes will steal more data
from slower nodes.
The completion time of large-data multicast transfers depends
primarily on the bandwidth an application can achieve across
the interconnection network. Traditionally, multicasting is
implemented using a sender initiated approach in which the
application nodes are arranged in spanning trees over which
the data are sent. However, the bandwidth between sites in a
grid environment can be significantly different and also
dynamically changing. To remain efficient, existing methods
compute optimal multicast trees based on network monitoring
information. This approach, however, is problematic because
it assumes network monitoring systems to be deployed
ubiquitously. It also assumes monitored data to be both
accurate and stable during a multicast operation, which might
not be the case in shared networks with variable background
traffic. Our Balanced Multicasting approach indeed suffers
from all these problems.

REFERENCES
[1] CERN, "LHC Computing Grid Project."http://lcg.web.cern.ch/LCG/, July

2004.
[2] M. P. Barcellos, M. Nekovee, M. Daw, J. Brooke, S. Olafsson. Reliable

Multicast for the Grid: a Comparisonof Protocol Implementations.
Proceedings of the UK E-Science All Hands Meeting,
Nottingham(UK), 2004.

[3] O. Beaumont, L. Marchal, and Y. Robert, “Broadcast Trees for
Heterogeneous Platforms,” in 19th Int. Parallel and Distributed
Processing Symposium (IPDPS’05), Denver, CO, USA, Apr 3-8 2005.

[4] R. Izmailov, S. Ganguly, and N. Tu, “Fast Parallel File Replication in
Data Grid,” in Future of Grid Data Environments workshop (GGF-
10), Berlin, Germany, Mar 9 2004.

[5] T. Kielmann, R. F. Hofman, H. E. Bal, A. Plaat, and R. A.
Bhoedjang,“MagPIe: MPI’s Collective Communication Operations for
Clustered Wide Area Systems,” ACM SIGPLAN Symposium
onPrinciples and Practice of Parallel Programming (PPoPP), pp. 131–
140, May 4-6 1999.

[6] B. Lowekamp, B. Tierney, L. Cottrell, R. Hughes-Jones, T. Kielmann,and
M. Swany, “A Hierarchy of Network Performance Characteristics for
Grid Applications and Services,” Proposed Recommendation GFD-R-
P.023, Global Grid Forum, 2004.

[7] M. den Burger, T. Kielmann, and H. E. Bal, “Balanced
Multicasting:High-throughput Communication for Grid Applications,”
in Supercomputing 2005 (SC05), Seattle, WA, USA, Nov 12-18 2005.

V.Matheswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4294 - 4301

4300

[8] B. Cohen, “Incentives Build Robustness in BitTorrent,” in 1st Workshop
on Economics of Peer-to-Peer Systems, Berkeley, CA, USA, Jun 5-6
2003.

[9] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr,
“Chainsaw: Eliminating Trees from Overlay Multicast,” in 4th Int.
Workshop on Peer-to-Peer Systems (IPTPS 2005), Ithaca, NY, USA,
Feb 24-25 2005.

[10] K. Jeacle, J. Crowcroft. Reliable High-speed Grid Data Delivery using
IP Multicast. Proceedings of UKE-Science All Hands Meeting, UK,
September, 2003

[11] (2006) The Distributed ASCI Supercomputer 3. [Online]. Available:
http://www.cs.vu.nl/das3/

[12] R. Cohen and G. Kaempfer, “A Unicast-based Approach for Streaming
Multicast,” in 20th Annual Joint Conf. of the IEEE Computer and
Communications Societies (IEEE INFOCOM 2001), Anchorage, AK,
USA, Apr 22-26 2001, pp. 440–448.

[13] M. Kim, S. Lam, and D. Lee, “Optimal Distribution Tree for Internet
Streaming Media,” in 23rd Int. Conf. on Distributed Computing
Systems (ICDCS ’03), Providence, RI, USA, May 19-22 2003.

[14] Y. Cui, Y. Xue, and K. Nahrstedt, “Max-min Overlay Multicast: Rate
Allocation and Tree Construction,” in 12th IEEE Int.Workshop on
Quality of Service (IwQoS ’04), Montreal, Canada, Jun 7-9 2004.

[15] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, andA.
Singh, “SplitStream: High-Bandwidth Multicast in Cooperative
Environments,” in 19th ACM Symposium on Operating System
Principles (SOSP-19), Bolton Landing, NY, USA, Oct 19-22 2003.

[16] R. Wolski, “Experiences with Predicting Resource Performance On-line
in Computational Grid Settings,” ACM SIGMETRICS Perf. Evaluation
Review, vol. 30, no. 4, pp. 41–49, Mar 2003.

[17] T. Gross, B. Lowekamp, R. Karrer, N. Miller, and P. Steenkiste,
“Design, Implementation and Evaluation of the Remos Network,”
Journal of Grid Computing, vol. 1, no. 1, pp. 75–93, May 2003.

[18] J. Maassen, R. V. van Nieuwpoort, T. Kielmann, K. Verstoep, and M.
den Burger, “Middleware Adaptation with the Delphoi Service,”
Concurrency and Computation: Practice and Experience, vol. 18, no.
13, pp. 1659–1679, Nov 2006.

[19] N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk, and J.
Bresnahan, “Exploiting Hierarchy in Parallel Computer Networks to
Optimize Collective Operation Performance,” in 14th Int. Parallel and
Distributed Processing Symposium (IPDPS ’00), Cancun, Mexico, May
1-5 2000, pp. 377–384.

[20] T. Kielmann, H. Bal, S. Gorlatch, K. Verstoep, and R. Hofman,
“Network Performance-aware Collective Communication for Clustered
Wide Area Systems,” Parallel Computing, vol. 27, no. 11, pp. 1431–
1456, 2001.

[21] K. Verstoep, K. Langendoen, and H. Bal, “Efficient Reliable
Multicaston Myrinet,” in Int. Conf. on Parallel Processing (ICPP
1996), vol. 3, Bloomingdale, IL, USA, Aug 12-16 1996, pp. 156–165.
[23] Y. Cui, B. Li, and K. Nahrstedt, “On Achieving Optimized
Capacity Utilization in Application Overlay Networks with Multiple
Competing Sessions,” in 16th Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA ’04). Barcelona,
Spain:ACM Press, Jun 27-30 2004, pp. 160–169.

[22] D. Kosti´c, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet:
HighBandwidth Data Dissemination Using an Overlay Mesh,” in 19th
ACM Symposium on Operating System Principles (SOSP-19), Bolton
Landing, NY, USA, Oct 19-22 2003.

[23] R. Bindal, P. Cao, W. Chan, J. Medval, G. Suwala, T. Bates, and A.
Zhang, “Improving Traffic Locality in BitTorrent via Biased Neighbor
Selection,” in 26th Int. Conf. on Distributed Computing Systems
(ICDCS 2006), Lisboa, Portugal, Jul 4-7 2006.

[24] J. Pouwelse, P. Garbacki, J. W. A. Bakker, J. Yang, A. Iosup, D. Epema,
M.Reinders, M. van Steen, and H. Sips, “Tribler: A Social-based Peer-
to-Peer System,” in 5th Int. Workshop on Peer-to- Peer Systems
(IPTPS’06), Santa Barbara, CA, USA, Feb 27-28 2006.

[25] C. Gkantsidis and P. Rodriguez, “Network Coding for Large
ScaleContent Distribution,” in IEEE/INFOCOM’05, Miami, FL, USA,
Mar 13-17 2005.

[26] G. Rajappan, M. Dalal. Reliable Multicast with Active Filtering for
istributed Simulations. Proceedingsof Military Communications
Conference (MILCOM 2003), Boston, MA, October, 2003.

V.Matheswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4294 - 4301

4301

