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Abstract-  Grid computing can be characterized as distributed 
infrastructure that is a collection of computing resources within or 
across locations that are aggregated to act as a unified processing 
resource. In some of the anticipated future Grid applications, the 
same data will be transmitted to multiple sites. It is widely accepted 
that this can be, in theory, best achieved using reliable multicast 
protocols. In this paper we present Robber, a collective, receiver-
initiated, high-throughput multicast approach inspired by the 
BitTorrent protocol. Unlike BitTorrent, Robber is specifically 
designed to maximize the throughput between multiple cluster 
computers. Nodes in the same cluster work together as a collective 
that tries to steal data from peer clusters. Instead of using 
potentially outdated monitoring data, Robber automatically adapts 
to the currently achievable bandwidth ratios. Within a collective, 
nodes automatically tune the amount of data they steal remotely to 
their relative performance. Our experimental evaluation compares 
Robber to BitTorrent, to Balanced Multicasting, and to its 
predecessor MOB. Balanced Multicasting optimizes multicast trees 
based on external monitoring data, while MOB uses collective, 
receiver-initiated multicast with static load balancing. Our 
experimental evaluation shows that our approach outperforms 
existing multicast strategies by large margins. 
 
Keywords: High-throughput multicast, Load-balancing, Cluster 
computing, application layer multicast; grid computing; overlay 
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1. INTRODUCTION 
A grid consists of multiple sites, ranging from single 
machines to large clusters, located around the world. 
Contrary to more traditional computing environments like 
clusters or super computers, the network characteristics 
between Grid sites are very heterogeneous. Therefore, 
communication libraries need to take this heterogeneity into 
account to maintain efficiency in a world-wide environment. 
A typical communication pattern is the transfer of a 
substantial amount of data from one site to multiple others, 
also known as multicast. The completion time of large data 
transfers depend primarily on the bandwidth of the 
interconnection network.[1]. Multicasting is usually 
implemented by arranging the nodes in a certain spanning 
tree over which the data are sent. This method can be very 
inefficient in a grid environment, where the differences in 
bandwidth between sites should be taken into account to 
achieve high throughput. 
Using reliable multicast protocols in Grid computing is still 
an open issue and a lot of researches have been made in 
recent years [2]. Most of these have aimed at easily porting 
existing Grid applications to multi-destination environments 
by enriching TCP with multicast capabilities (protocol level) 
[11]. However, it is worth noting that typically Grid 

middleware platforms exhibit their own programming 
interfaces that hide low-level communication APIs, such as 
sockets. Therefore, TCP extension is useful when an existing 
application that directly uses TCP has to be modified in order 
to deliver data to multiple receivers. Another approach could 
be based on application-aware components, called Active 
Routers [24], disseminated in specific points of the Grid 
infrastructure, which are able to handle application-dependent 
services on incoming data packets (infrastructure level), for 
example to improve the performances of a multicast 
communication. This approach has some disadvantage of 
requiring the deployment of specific routers, with ad-hoc 
execution environments, that limits its application and 
widespread in the implementation of real Grid systems.  
To tackle the above issues, we think that group 
communication mechanisms can be adopted to easily write 
applications according to the hierarchical master-slave model. 
As a consequence, providing a middleware for Grid 
computing with an effective and efficient implementation of 
the group abstraction could simplify software development 
and reduce the communication overhead both in small scale 
and in large scale networks. In this paper we have presented 
Robber a receiver initiated multicast approach that combines 
collective data stealing with load balancing. In Robber, the 
amount of data a node steals remotely is treated as “work”. 
Initially, the work is divided equally among all nodes in a 
collective and its steal from local peers. In this way fast nodes 
will steal more data from slower nodes. However, the 
problems and solutions proposed can be easily applied to 
other Grid platforms. 
 

2. MATERIALS &METHODS 
In a multicast operation, the root node is transmitting data to 
all other nodes of a given group, like the processes of an 
application. This is comparable to MPI’s broadcast operation. 
For optimizing multicast, we are minimizing the overall 
completion time, from the moment the root node starts 
transmitting until the last receiver has got all data. As we are 
interested in multicasting large data sets, we optimize for 
high throughput. Thus report our results as achieved 
throughput (in MB/s). Before presenting our proposed work, 
Robber algorithm, we first discuss more traditional 
approaches to multicasting in grids and Internet-based 
environments. In this section, we also summarize our 
previous approaches Balanced Multicasting and MOB, as 
well as some other receiver-initiated multicast approaches, 
and discuss their performance limitations. We complete our 
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discussion with some background on random stealing, which 
is used in our Robber algorithm. 
2.1 Overlay Multicasting 
Multicasting over the Internet started with the development of 
IP multicast, which uses specialized routers to forward 
packets. Since IP multicast was never widely deployed, 
overlay multicasting became popular, in which only the end 
hosts play an active role. Several centralized or distributed 
algorithms have been proposed to find a single overlay 
multicast tree with maximum throughput [13], [14]. Splitting 
the data over multiple trees can increase the throughput even 
further. A related topic is the overlay multicast of media 
streams, in which it is possible for hosts to only receive part 
of the data (which results in, for instance, lower video 
quality). In [14], [15], a single multicast tree is used for this 
purpose. Split Stream [16] uses multiple trees to do distribute 
streaming media in a P2P context. Depending on the 
bandwidth each host is willing to donate, the hosts receive a 
certain amount of the total data stream. The maximum 
throughput is thus limited to the bandwidth the stream 
requires. In contrast, our multicast approaches try to use the 
maximum amount of bandwidth the hosts and networks can 
deliver. 
2.2 Network Performance Modeling 
Throughout this work, we assume networks as sketched in 
Fig. 2.2. Nodes are distributed among clusters. Within each 
cluster, nodes are connected via some local interconnect. 
Towards the WAN, each node has a network interface that is 
connected to a shared access link. All access links end at a 
gateway router (typically to the Internet). Within the WAN, 
we assume full connectivity among all clusters. For 
optimizing multicast operations, we need to efficiently use 
the available network bandwidth where we distinguish, as 
outlined in [6]. Bandwidth Capacity is the maximum amount 
of data per time unit that a hop or path can carry. Achievable 
Bandwidth is the maximum amount that a hop or path can 
provide to an application, given the current utilization, the 
protocol and operating system used, and the end-host 
performance. We are interested in maximizing the achievable 
bandwidth of all data streams used for a multicast operation. 
 

 
Fig. 1: Network model including clusters 

 

In multicasting, sharing effects can be observed whenever 
single host is sending to and/or receiving from multiple other 
hosts. Here, the bandwidth capacity of the local network can 
become a bottleneck. This local capacity can be limited either 
by the network interface (e.g., a Fast Ethernet card, connected 
to a gigabit network), or by the access link to the Internet that 
is shared by all machines of a site. In this Section we refer to 
this setting as a local bottleneck environment, dominated by 
local bandwidth capacity. The opposite situation, where the 
bottleneck bandwidth is dominated by the achievable 
bandwidth across the wide-area network, we will call a global 
bottleneck environment. 
In order to optimize multicast operations based on the given 
network characteristics, one has to rely on external network 
monitoring systems like the Network Weather Service [17], 
REMOS [18], or Delphoi [19]. Using such tools, however, 
has its own issues. First of all, the monitoring tools have to be 
deployed between all clusters in question. Frequently, this is 
an administrative issue. Second, network bandwidth is 
measured using active probes (sending measurement traffic) 
which can take significant amounts of time and scales only 
poorly to large environments as, for N clusters, O(N2) 
network paths need to be measured. Consequently, 
measurements are run in frequencies that are too low to 
properly follow dynamic bandwidth fluctuations. Finally, 
network monitoring tools measure the properties of the 
network paths themselves rather than the properties that are 
relevant to the applications, namely achievable bandwidth. 
Translating monitoring data to application-level terms is a 
hard problem [19]. 
2.3 Optimizing Sender-initiated Multicast 
Optimization of multicast communication has been studied 
extensively within the context of message passing systems 
and their collective operations. The most basic approach to 
multicasting is to ignore network information altogether and 
send directly from the root host to all others. MagPIe [5] used 
this approach by splitting a multicast in two layers: one 
within a cluster, and one flat tree between clusters. Such a flat 
tree multicast puts a high load on the outgoing local capacity 
of the root node, which often becomes the overall bandwidth 
bottleneck. As an improvement, we can let certain hosts 
forward received data to other hosts. This allows to arrange 
all hosts in a directed spanning tree over which the data are 
sent. MPICH-G2 [20] followed this idea by building a multi-
layer multicast to distinguish wide-area, LAN and local 
communication. 
As a further improvement for large data sets, the data should 
be split to small messages that are forwarded by the 
intermediate hosts as soon as they are received to create a 
high-throughput pipeline from the root to each leaf in the tree 
[21]. The problem with this approach is to find the optimal 
spanning tree. If the bandwidth between all hosts is 
homogeneous, we can use a fixed tree shape like a chain or 
binomial tree, which is often used within clusters [22]. As a 
first optimization for heterogeneous networks, we can take 
the achievable bandwidth between all hosts into account. The 
throughput of a multicast tree is then determined by its link 
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with the least achievable bandwidth. Maximizing this 
bottleneck bandwidth can be done with a variant of Prim’s 
algorithm, which yields the maximum bottleneck tree [13]. 
However, this maximum bottleneck tree is not necessarily 
optimal because each host also has a certain local capacity. A 
forwarding host should send data to all its n children at a rate 
at least equal to the overall multicast throughput t. If its 
outgoing local capacity is less than n · t, it cannot fulfill this 
condition and the actual multicast throughput will be less 
than expected. Unfortunately, taking this into account 
generates an NPhardproblem. 
The problem of maximizing the throughput of a set of overlay 
multicast trees has also been explored theoretically. Finding 
the optimal solution can be expressed as a linear 
programming problem, but the number of constraints grows 
exponentially with the number of hosts. In theory, this can be 
reduced to a square number of constraints, but in practice 
finding the exact solution can be slow and expensive [23]. 
Any solution thus will have to rely on heuristics to be 
applicable in real time. The multiple tree approach in [3] uses 
linear programming to determine the maximum multicast 
throughput given the bandwidth of links between hosts, but 
requires a very complicated algorithm to derive the set of 
multicast trees that would achieve that throughput. Therefore, 
the linear programming solution is only used to optimize the 
throughput of a single multicast tree. The Fast Parallel File 
Replication (FPFR) tool [4] is implementing multiple 
concurrently used multicast trees. FPFR repeatedly uses 
depth-first search to find a trees panning all hosts. For each 
tree, its bottleneck bandwidth is “reserved” on all links used 
in the tree. Links with no bandwidth left can no longer be 
used for new trees. This search for trees continues until no 
more trees spanning all hosts can be found. The file is then 
multicast in fixed-size chunks using all trees found. FPFR 
does not take the local bandwidth capacity of hosts into 
account, leading to over subscription of links, forming 
capacity bottlenecks. In consequence, depending on local 
capacities, FPFR may perform much worse than expected. 
2.4 Balanced Multicasting 
In previous work [7], we have presented Balanced 
Multicasting, improving over FPFR by also taking bandwidth 
capacity into account. An example is shown in Fig-2(a), 
consisting of three hosts, each connected to the network by 
their access line. Routers connect access lines with the WAN. 
Access lines are annotated with their local capacity, e.g. the 
capacity of the LAN. Wide-area connections are annotated 
with their achievable bandwidth. For simplicity of the 
example, we assume all connections to be symmetrical in 
both directions. (The actual units for bandwidth are not 
relevant here.) 
In this example, Balanced Multicasting creates the three 
multicast trees shown in Fig. 2(b), with a total achievable 
bandwidth of 9. Together, these trees maximize the multicast 
throughput while not oversubscribing individual link 
capacities. Please note that the individual trees may have 
different bandwidth, in the example 4, 1, and 4. These 

different data rates are enforced by traffic shaping at the 
sender side. 

 
 

(a) Network example: x sends data to y and z 
 

 
(b) Balanced multicast trees 

 
Fig. 2: Example of Balanced Multicasting 

 
This process of balancing the bandwidth shares gave the 
name to the approach. If the sender would not balance the 
shares of the three trees, then the middle tree (using the LAN 
at x twice) would consume bandwidth that was intended for 
the other trees, resulting in a total bandwidth of 3 × 10/4 = 
7.5, instead of the anticipated 9. This example shows 
balanced multicast trees as they are computed by our 
algorithm published in [7]. Finding the optimal set of 
balanced multicast trees is an NP-hard problem. For this 
reason, our implementation is using heuristics to find 
solutions which we have shown in [7] to be close to the 
optimum. 
 When evaluating Robber, we compare to Balanced 
Multicasting as a (close-to) optimal solution that can be 
found with complete network performance information. 
Balanced Multicasting, however, like all other spanning tree 
based multicasting strategies, is computing its optimized 
spanning trees based on the monitoring data available at the 
time when the multicast is started. Later changes in the 
network will not be taken into account. 
2.5 Receiver-initiated Multicast 
As explained so far, deriving optimized multicast trees is a 
hard problem. Especially in the case of dynamically changing 
network performance, carefully computed multicast trees can 
easily become inefficient. Therefore, several alternatives have 
been developed based on receiver-initiated communication, 
in which nodes explicitly request data from each other instead 
of forwarding it over trees. Bullet [24] takes a hybrid 
approach to high-throughput multicasting. A Bullet network 
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consists of a tree combined with a mesh overlay. The data is 
divided in blocks that are further divided in packets. Nodes 
send a disjoint subset of packets to their children in the tree, 
and request the remaining pieces from a set of disjoint peers 
in the system. The selection of those peers is based on 
random, orthogonal subsets of nodes distributed periodically 
by the RanSub algorithm. Bullet’s additional mesh 
distribution layer yields significantly better throughput than 
traditional tree structures. Bit Torrent [8] is a peer-to-peer 
application, designed to distribute large files efficiently. The 
data is logically split in P equally-sized pieces, usually a few 
hundred kilobytes each. Nodes create an overlay mesh by 
connecting to a few peer nodes chosen at random, and tell 
each other which pieces they already possess. From then on, 
nodes constantly inform each other which new pieces they 
received. Nodes explicitly request pieces from their peers, 
which are randomly chosen from the reported ones. Each 
node always has R outstanding requests (we use R = 5) to get 
the ’pipelining’ effect described in [8]. Which peers are 
allowed to request pieces is decided by the so-called choking 
algorithm. A node ’unchokes’ only N peers at the same time 
(we use N = 5), thereby allowing them to download pieces. 
The decision to choke or unchoke peers is made every 10 
seconds, and is based on the observed download rate. This 
results in an incentive to upload pieces, since uploading gives 
a higher chance of being allowed to download. 
Chainsaw [9] uses a simplified version of the Bit Torrent 
protocol, applied to live streaming of data. Nodes have a 
sliding window of interest, which they advertise to their 
neighbors. Packets that could not be found in time ’fall off’ 
the trailing edge of the window, and are considered lost. 
2.6 Clustering Nodes 
Other work has already recognized that grouping receiver-
initiated multicast nodes to clusters can increase the overall 
throughput. Biased neighbor selection [25] proposes to group 
BitTorrent nodes by ISP (Internet Service Provider), which 
reduces the amount of costly traffic between ISPs. Robber is 
doing a similar grouping by cluster, but also adds teamwork 
among the nodes of a cluster to further improve multicast 
performance. In uncooperative peer-to-peer environments, 
this improvement would not be possible. 
Another approach is followed by Tribler [26], a 
BitTorrentclient that groups users in social clusters of friends. 
The amount of trust between nodes is increased using 
existing relations between people. Users can tag each other as 
a friend, indicating they are willing to donate upload 
bandwidth to each other by searching each other’s pieces. 
Robber is essentially an automation of this technique applied 
to grid clusters, with all nodes in the same cluster being 
friends. However, the coordination of teamwork in Robber is 
much more efficient. Robber’s predecessor MOB [10] is 
based on the Bit-Torrent protocol. Nodes in the same cluster 
are grouped to ’mobs’. Each node in a mob steals an equal 
part of all data from peers in remote clusters, and distributes 
the stolen pieces locally. This way, each piece is transferred 
to each cluster only once, which greatly reduces the amount 
of wide-area traffic compared to BitTorrent. The incoming 

data is also automatically spread overall nodes in a mob, 
which works very well when the NICs of the nodes are the 
overall bandwidth bottleneck instead of the wide-area links. 
Although MOB achieves good throughput with a small 
amount of homogeneous clusters, its static load balancing 
approach fails in larger or more heterogeneous grid 
environments. 
The amount of WAN traffic between clusters of Bit-Torrent 
nodes can also be decreased using network coding [23]. 
Nodes then exchange linear combinations of pieces, which 
increases the probability that a peer in the same cluster has 
data of interest. However, the complexity and computational 
overhead of network coding have limited its practical use. 
The work division in MOB and Robber is much more 
lightweight and also minimizes the WAN traffic between 
clusters. 
2.7 Random Work Stealing 
Random work stealing is a well known load balancing 
technique used in various distributed computing systems. It 
can be applied when multiple nodes are solving a 
computational problem by dividing it into a number of 
smaller problems. All problems assigned to a node are called 
its work. Each node starts solving all problems assigned to it. 
When a node becomes idle, it will attempt to steal some work 
from a randomly selected peer, repeating steal attempts until 
it succeeds. This way, faster nodes will eventually process 
more work than slower nodes. Robber uses this technique to 
dynamically spread the bandwidth demand of a multicast 
operation over nodes in the same cluster. 
 

3. PROPOSED WORK 
More recently, receiver-initiated multicast has become 
popular in peer-to-peer networking. Here, the application 
nodes are arranged in a random mesh, and explicitly request 
data from their neighbors. Nodes update each other about 
which parts of the data they possess, and randomly exchange 
parts with each other. This way, nodes dynamically route the 
data over the mesh. The request-reply interaction between 
nodes automatically adapts the effective throughput to the 
available bandwidth, which handles heterogeneous and 
fluctuating WAN bandwidth very well.  
Most current receiver-initiated multicast approaches are 
designed for peer-to-peer systems of individual and 
uncooperative nodes. In contrast, we apply this approach to 
grid environments, consisting of multiple clusters of 
cooperative application nodes.  
In such systems, the set of nodes used by a grid application 
remains constant during a single run, i.e., there is no churn. 
Any data loss will only affect the achievable bandwidth, 
which, in turn, is handled by our multicast algorithms. 
 This paper presents Robber, a successor to MOB that adds 
dynamic load balancing within a collective. Instead of using a 
static division of work (the data to request remotely), nodes 
that have become idle steal work from other nodes in the 
same collective. As a consequence, each node automatically 
performs an amount of work proportional to its relative speed 
in a collective.  
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This avoids waiting for slow nodes to complete their share of 
work, greatly enhancing the overall throughput. In large grid 
environments and with heterogeneous clusters, Robber 
automatically adjusts the workload of nodes in each cluster to 
their relative performance, resulting in much better 
throughput. 
To reduce the work load for the users secure data 
transmission from the server using WLA.      
In this section we present Robber, a multicast algorithm 
based on collective data stealing. Robber distributes data over 
a random mesh by letting nodes ’steal’ pieces from other 
nodes. In addition, nodes in the same cluster team up in 
collectives that together try to steal pieces from nodes in 
other clusters as efficiently as possible. The total set of pieces 
a collective C has to steal from nodes in other clusters is 
called its work(C). Initially, each node n  C is assigned an 
equal share of work, denoted as work (n). Each stolen piece is 
exchanged locally between members of a collective, such 
that, at the end, all nodes will have received all data. When a 
node has no more work left, it attempts to steal work from a 
randomly selected local peer. This way, faster nodes 
download more pieces to a cluster than slower nodes, which 
prevents the latter from becoming the overall bandwidth 
bottleneck. 
Fig-3 illustrates the peer selection process. With equally-
sized clusters, potential global peers have same collective 
rank. With different-sized clusters, potential global peers are 
selected uniformly at random from an equal share of all 
nodes. This strategy ensures that the connections between 
nodes in different clusters are well spread out over all clusters 
and their nodes. 
 

 
Fig. 3: Examples of peer selection between two clusters of 

the same size (A and B) and different sizes (A and C). 
Potential global peers are connected by an arrow. 

 
After all connections are set up, data can be transferred. The 
data is logically split into P equally sized pieces, numbered  
0 to P − 1. At the start of a multicast operation, each node n 
provides a set of the indices of the pieces it already possesses, 
denoted as possession(n). In a regular multicast operation, on 
eroot node possesses everything and the other nodes nothing. 
Other variations are also possible, like multiroot multicast 
(where multiple nodes have all data) or striping (where each 
node in a collective has a part ofall data). As long as there is 
at least one ’root collective’ in which all nodes together 
possess all pieces, all nodeswill receive all data. The set of 
piece indices denoting the pieces a Robber node n wants to 
steal from a peer p is called its desire(n, p). From local peers, 
a node desires all pieces it does not have. From global peers, 

a node n only desires the pieces that are part of its work(n). 
When a node has received all P pieces, it joins a final 
synchronization phase. Here, each node keeps serving 
requests from its peers until this is no longer necessary, so 
every node is able to finish. A node starts the synchronization 
phase by sending a ’done’ message to all its peers. Whenever 
it receives such a message from a peer, it remembers the peer 
is done. When a node and its peer are both done, they send a 
final ’stop’ message to each other. This ’stop’ message s the 
last message sent to a peer in a single multicast operation. 
When a node receives a ’stop’ message from a peer, it stops 
listening to it. A node finished a multicast operation once it 
stopped listening to all its peers. Nodes communicate with 
their peers using a variant of the BitTorrent protocol [8] using 
only bitfield, have, request and piece messages for stealing 
data. We add desire, steal, work and found-work messages for 
stealing work. Table 1 summarizes the format of each 
message. 

 
TABLE 1: Format of messages used by Robber 

 

 
4. RESULTS & DISCUSSION 

In Grid environment, this method can be efficient as 
bandwidth between sites can not vary among network paths. 
The completion time of large data transfer depends primarily 
on the bandwidth across network.  Fig- 4 shows a high-level 
view of the software layers in our implementation, and 
Robber’s implementation in more detail. We have 
implemented Robber, as well as BitTorrent, MOB, and 
Balanced Multicasting (BM) on top of Ibis, our Java-based 
Grid programming environment. We used the Smart Sockets 
library to emulate different clusters inside a single cluster by 
providing configurable custom routing of data, which we 
used to evaluate our algorithms. Ibis   provides all nodes with 
the names and ranks of all other nodes and the names of their 
clusters, which is all the input data Robber and MOB need. 
Balanced Multicasting also needs network monitoring data 
information.  we use the input for the emulation itself as 
monitoring data. 

 
Fig.-4: Software layers and details of Robber’s 

implementation 

Message(s) Format 
steal, found-work, done, stop opcode (byte) 

have, request 
opcode (byte), piece index 
(integer) 

bitfield, desire, work 
opcode (byte), piece indices (list 
of booleans) 

piece opcode (byte), data (list of bytes) 
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Each of the four multicast methods is encapsulated in a 
Multicast Channel object. Fig- 4 shows the implementation of 
the Robber Multicast Channel object. All connections to 
peers are created in the constructor. Each connection is 
abstracted in a Robber Connection object. The underlying 
Robber Communicator object sends and receives protocol 
messages using Ibis’ send port and receive port primitives. 
All received messages are processed in asynchronous up calls 
provided by Ibis, and translated to individual callback 
functions in the Robber Connection object on top. Outgoing 
data is put into a queue and sent in a separate thread per 
connection to avoid deadlocks.  
Data can be multicast by invoking the same method on a 
Robber Multicast Channel object on each node, which returns 
when all data has been received. Received data can only be 
altered after calling Robber Multicast Channel. flush(), which 
waits until all peers have received all data too. 
We emulated the various WAN scenarios in all test cases 
within one cluster of the Distributed ASCI Supercomputer 3 
(DAS-3) [12]. Each node in the DAS-3 is equipped with two 
2.4GHz AMD Opterons and a 10Gbit Myrinet network card 
for fast local communication. Using emulation enabled us to 
precisely control the environment and subject each multicast 
method to exactly the same network conditions without any 
interfering background traffic. This ensured a fair comparison 
and reproducible results. The emulation only concerns the 
network performance. All application nodes run the real 
application code (Ibis and one of the four multicast protocols 
on top). 
 

 
Fig-5: Emulation setup with four clusters. The hub nodes A, 

B,C, and D route data between clusters and apply traffic 
control. 

 
We have evaluated Robber by comparing its performance to 
that of BitTorrent, MOB, and Balanced Multicasting in four 
test cases. The first two test cases consist of several ’global 
bottleneck’ scenarios of various dynamics and size. The 
second two test cases are examples of ’local bottleneck’ 
scenarios, and show that Robber achieves the same optimized 
throughput between clusters as Balanced Multicasting, 
without needing any external monitoring data. Finally, we 
have analyzed the communication overhead and 
computational overhead of Robber and MOB. Fig-5 shows 
the setup of four emulated clusters, as used in the first test 
case.   

The other test cases use an identical setup, except for the 
amount of clusters. Nodes in the same emulated cluster 
communicate directly, but traffic between nodes in different 
emulated clusters is routed via two special ’hub’ nodes using 
Smart Sockets. Besides routing inter-cluster traffic, the hubs 
also emulate the wide-area bandwidth and delay between 
clusters using the Linux Traffic Control (LTC) kernel module 
to slow down outgoing Myrinet traffic.  
Bandwidth is emulated using HTB qdiscs , while one-way 
delay is emulated using Netem qdiscs. The qdiscs use a 
default maximum queue length of 1000 packets. The hubs 
apply simple end-to-end flow control to slow down a source 
node in case of ’congestion’. All qdiscs together mulate 
incoming and outgoing capacity of nodes and clusters, and 
delay and bandwidth between clusters.  
The first two test cases evaluate the performance of 
BitTorrent, MOB, Robber and Balanced Multicasting in 
various ’global bottleneck’ environments. In the first test 
case, we compare the performance of all multicast methods 
under fluctuating wide-area bandwidth. The second test case 
demonstrates the emergence of slow nodes in larger 
environments, and shows the benefit of Robber’s load 
balancing strategy. 
Test Case 1: Dynamic Wide-area Bandwidth The first test 
case consists of five WAN scenarios with different dynamics: 
1) fast links: the WAN bandwidth on all links is stable and 

set.  
2) slow links: like scenario 1, but with the bandwidth of links 

A ↔ D and B ↔ C set to 0.8 MB/s. 
3) fast → slow: like scenario 1 for 30 seconds, then like 

scenario 2, emulating a drop in throughput on two WAN 
links. 

4) slow → fast: like scenario 2 for 30 seconds, then like 
scenario 1, emulating an increase in throughput on two 
WAN links 

5) mayhem: like scenario 1, but every 5 seconds all links 
randomly change their bandwidth between10% and 
100% of their nominal values, emulating heavy 
background traffic. The random generator is always 
initialized with the same seed to ensure that this scenario 
uses identical fluctuations every time. 

 
In all five scenarios, the one-way delay of the wide area links 
is set to 10 ms. We emulate four clusters of16 nodes each. 
One root node in cluster A sends 600 MB to all other nodes, 
using four different multicast methods (BitTorrent, MOB, 
Robber, and Balanced Multicasting)in the five scenarios 
described above. In each scenario, Balanced Multicasting 
uses the exact initial emulated bandwidth values as input for 
its algorithm. We also compute the theoretical maximum 
throughput in each scenario by converting all 16 possible 
multicast trees between the four clusters to a linear program. 
For the maximum throughput in the dynamic scenarios, we 
assume that the theoretical algorithm can adapt instantly to 
the optimal strategy in each new situation.  
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Fig. 6: Multicast throughput between four clusters of 16 

nodes each. The root node sends 600MB to all others using 
four different methods. 

 
Fig.6 shows for each scenario the throughput of each 
multicast method, calculated as 600 MB divided by the time 
passed between the moment the root started the multicast and 
the moment the last node received all data. Table-1 shows 
these throughput values as a percentage of the theoretical 
maximum throughput in each WAN scenario. It can be seen 
that BitTorrent always performs worst, which is caused by 
the overhead it creates by sending duplicate WAN messages. 
The difference between MOB and Robber shows the small 
overhead of Robber’s extra load-balancing communication 
(which is not really needed  in this case, since all nodes in 
each cluster are equally fast). Robber and MOB perform 
similar to Balanced Multicasting in the static scenarios, and 
outperform it in all three dynamic ones. In the first dynamic 
scenario ’fast → slow’, Balanced Multicasting over uses the 
links that became slow and does not adapt, for which it is 
heavily penalized.  
In contrast, Robber and MOB adapt and use the other WAN 
links to distribute the data, resulting in much higher 
throughput. In the second dynamic scenario ’slow→fast’, 
Balanced Multicasting does not use the extra achievable band 
width that became available on two WAN links due to its 
sender-side traffic shaping. It therefore achieves the same 
throughput as in the ’slow links’ scenario, whereas Robber 
and MOB greedily use the extra bandwidth that became 
available. In the last dynamic scenario ’mayhem’, the average 
throughput of all links is 55% of that in the ’fast links’ 
scenario. Balanced Multicasting actually achieves 30% of its 
throughput in the ’fast links’ scenario, since it continuously 
uses the same WAN links and the throughput of the 
bottleneck link in each of its multicast trees determines its 
overall throughput. 
 

TABLE 2: Percentage of the theoretical maximum 
throughput each multicast method achieves in the five WAN 

scenarios 
Links BitTorrent MOB Robber BM 

Fast links 13% 92% 91% 93% 

Slow Links 13% 92% 91% 93% 

Fast-> Slow 8% 78% 85% 19% 

Slow->Fast 18% 98% 95% 57% 

Mayhem 14% 92% 90% 55% 
 

5. CONCLUSION 
In this paper we have presented Robber a receiver initiated 
multicast approach that combines collective data stealing 
with load balancing. In Robber, the amount of data a node 
steals remotely is treated as “work”. Initially, the work is 
divided equally among all nodes in a collective and its steal 
from local peers. In this way fast nodes will steal more data 
from slower nodes. 
The completion time of large-data multicast transfers depends 
primarily on the bandwidth an application can achieve across 
the interconnection network. Traditionally, multicasting is 
implemented using a sender initiated approach in which the 
application nodes are arranged in spanning trees over which 
the data are sent. However, the bandwidth between sites in a 
grid environment can be significantly different and also 
dynamically changing. To remain efficient, existing methods 
compute optimal multicast trees based on network monitoring 
information. This approach, however, is problematic because 
it assumes network monitoring systems to be deployed 
ubiquitously. It also assumes monitored data to be both 
accurate and stable during a multicast operation, which might 
not be the case in shared networks with variable background 
traffic. Our Balanced Multicasting approach indeed suffers 
from all these problems. 
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